Planning for Water Shortages

Marty Laporte, Adam Kern, Jennifer Fitch

Stanford University – Utilities Services
And Maddaus Water Management
Planning for Water Shortages - Overview

- Goal – Water Shortage Contingency Plan that clearly identifies implementation criteria, reduction measures, and expectations
- Identify key networking group – representatives
- Identify, obtain current and relevant water use information that will be used to back up the plan
- Develop a flexible, practical plan, use scenarios
Planning for Water Shortages - Plan Elements

- Get Intelligence - History of water supply and demand – use annual, seasonal, monthly, trend meter data
- Identify “intelligence loop” - factual information from customer groups, use trends – define group profiles, multi-year trends
- Survey customers - early in the season, request current information from each customer group
- Establish communication process and access: web site, newsletters, emails, billing inserts, information available for mobile devices
- Identify measures, priorities, implementation phases
- Obtain commitments, set performance goals, track and communicate
Stanford University Domestic Water Use 2001-2012

Gallons Per Day (000's)

- Water Purchases
- GSF

Gross Square Footage

Stanford University Domestic Water Consumption
FY2012 (2.13 million gals/day)

- Metered Irrigation 9%
- Faculty Staff Housing (includes irrigation) 20%
- Academic & Administrative 19%
- Student Housing & Dining 20%
- CEF COGEN 25%

Stanford University Lake Water Consumption
FY2012 (1.03 million gals/day)

- Athletics - Golf Course 23%
- Athletics - Varsity Golf Practice Field 6%
- Athletics - Not Including Golfcourse & Golf Practice Field 15%
- Academic & Administrative 32%
- Other Support Facilities 11%
- Faculty Staff Housing 1%
- Flushing/Construction 1%
Domestic Water Consumption
BAWSCA FY2002 - FY2014 YTD

FY02-14 YTD Bill Period Avg/Day
12 per. Mov. Avg. (FY02-14 YTD Bill Period Avg/Day)

BAWSCA FY2014
(July 2013 - December 2013 Bill Periods)
2,514,000 Avg Gals/Day
LAKE WATER SYSTEM
FY2002-FY2014 YTD
Bill Period Average per Day

BAWSCA FY2014 YTD
(July 2013 - Dec 2013
Bill Periods)
1,453,000 Avg Gals/Day
Planning for

Water Shortages - Set Realistic Expectations

- Identify key communication needs
- Survey customers early in the season - request information about their water efficiency work
- Prepare communication materials – establish Fact Sheet format for consistency
- Model scenarios
Web-based interface, with dashboard

Model criteria:
- Easy to use, clear
- Flexible
- Captures all background data used in the model
- Relevant references
- Sources of information and data
- Historical metered data
- Supply and demand projections
- Wholesaler requirements
WATER SHORTAGE MANAGEMENT MODEL

Includes:

✓ All water sources, independently and combined
✓ Cutbacks/limitations for each source
✓ Pre-programmed and new scenarios
✓ Identified categories of use
✓ Monthly use for each category
✓ Seasonal supply and demand
✓ Growth: population, business, sqft
Projected Demand for Each Category by Month

- Non-Billable NP
- Staff Housing NP
- Academic NP
- Comm Spaces NP
- Construction Projects NP
- Medical School NP
- CEF/Cogen NP
- Athletics NP
- Student Housing NP
- Golf Course NP
- Lake Lagunita Diversions
- Flushing/System Losses
- CEF
- Staff Housing
- Academic
- Comm Spaces
- Construction Projects
- Medical School
- Athletics
- Student Housing
SFPUC & Surface Supply Limit

<table>
<thead>
<tr>
<th>Year</th>
<th>SFPUC Supply Limit (mgd)</th>
<th>Surface Water Supply Limit (mgd)</th>
<th>Comments</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>1.99</td>
<td>0.75</td>
<td></td>
<td>SFPUC max supply: 3.03 mgd</td>
</tr>
<tr>
<td>2015</td>
<td>1.99</td>
<td>0.75</td>
<td></td>
<td>SFPUC Estimated Demand for 2012 (up 3%): 2.1</td>
</tr>
<tr>
<td>2016</td>
<td>1.99</td>
<td>0.75</td>
<td></td>
<td>SFPUC DRIP supply limit: 1.81 mgd</td>
</tr>
<tr>
<td>2017</td>
<td>2.05</td>
<td>0.75</td>
<td></td>
<td>Lake Water Production Min: 0.2 mgd in 2007 Max</td>
</tr>
<tr>
<td>2018</td>
<td>2.12</td>
<td>0.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>2.18</td>
<td>0.75</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Well Supply Limit

<table>
<thead>
<tr>
<th>Well Name</th>
<th>Use Percent</th>
<th>Max Capacity (mgd)</th>
<th>Usable Capacity (mgd)</th>
<th>Use Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well #1</td>
<td>65%</td>
<td>0.72</td>
<td>0.47</td>
<td>Domestic/Non-Potable</td>
<td>Tom is working to get the sustainable</td>
</tr>
<tr>
<td>Well #2</td>
<td>65%</td>
<td>0.72</td>
<td>0.47</td>
<td>Domestic/Non-Potable</td>
<td>All wells can be valved for Dom/NP</td>
</tr>
<tr>
<td>Well #3</td>
<td>65%</td>
<td>1.73</td>
<td>1.12</td>
<td>Domestic/Non-Potable</td>
<td>Wells Max Use in July 2007 was 2.43</td>
</tr>
<tr>
<td>Well #4</td>
<td>65%</td>
<td>0.58</td>
<td>0.37</td>
<td>Non-Potable</td>
<td>Not permitted Use in July 2007 was 2.43</td>
</tr>
<tr>
<td>Well #5</td>
<td>65%</td>
<td>0.03</td>
<td>0.02</td>
<td>Domestic/Non-Potable</td>
<td>Restricted to 15 days per year</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>2.45</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CEF Demand Reduction

| Reduction Percent | 30% |
| Reduction Start Year | 2016 |

Cutbacks

<table>
<thead>
<tr>
<th>Cutback</th>
<th>Warm Season Months</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jan</td>
</tr>
<tr>
<td>Student Housing</td>
<td>10%</td>
</tr>
<tr>
<td>Athletics</td>
<td>10%</td>
</tr>
</tbody>
</table>
Developed BMPs and Metrics for Irrigated Landscaping

BMPs

1. Develop historical base/seasonal water use record.
2. Automate leak alert notices and customize thresholds by site.
3. Use weather-based irrigation controller(s).
4. Implement and repeat site audits every 3-5 years.
5. Develop simple, routine reports (on a weekly and monthly basis) to communicate water use.

Metrics

- Compare current base/seasonal use to historical base/seasonal water use record.
- Compare number, duration and volume of leaks per site.
- Compare water use per acre at weather-based sites vs. non weather-based sites.
- Compare management practices, site characteristics and water use to prior audit recommendations.
- Compare current water use to historical average (last 3 to 5 years): gallons per irrigated acre, total volume of leaks (gallons), duration of leaks and response to weather.

GALLONS OF WATER USED PER ACRE OF LANDSCAPING PER DAY (FOR STUDY SITES WITH MOSTLY TURF) FROM MAY 2011 TO APRIL 2012 BILL PERIODS

- May 2011 – April 2012
- Lomita Mall
- EV Studios 5 & 6
- Oval
- LKSC
- SCRA
- Arrillaga Rec. Cntr.

GALLONS OF WATER USED PER ACRE OF LANDSCAPING PER DAY (FOR STUDY SITES WITH MOSTLY TURF) FROM MAY 2012 TO APRIL 2013 BILL PERIODS

- May 2012 – April 2013
- Lomita Mall
- EV Studios 5 & 6
- Oval
- LKSC
- SCRA
- Arrillaga Rec. Cntr.
QUESTIONS?

Contact: Marty Laporte
MartyL@bonair.stanford.edu
Phone: 650-725-7864

http://lbre.stanford.edu/sem/Environmental_WaterEfficiency